The singular value decomposition (SVD) is an important factorization
of a rectangular real matrix
- see http://en.wikipedia.org/wiki/Singular_value_decomposition.
Eigendecomposition is the factorization of a matrix into a canonical
form, whereby the matrix is represented in terms of its eigenvalues
and eigenvectors
- see http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix.
This module implements the SVD and Eigen decomposition routines of
the The C GNU Scientific Library (GSL).
It provides simple convenience methods in the upper-level
Math::GSL::Linalg::SVD namespace to perform these operations.
Alternatively, it also provides direct access to the C routines in
the Math::GSL::Linalg::SVD::Matrix, Math::GSL::Linalg::SVD::Vector
and Math::GSL::Linalg::SVD::Eigen namespaces - see METHODS.
Maintained by: Jan F. Chadima
Keywords: perl linalg SVD
ChangeLog: perl-Math-GSL-Linalg-SVD
Homepage:
https://metacpan.org/pod/Math::GSL::Linalg::SVD
Download SlackBuild:
perl-Math-GSL-Linalg-SVD.tar.gz
perl-Math-GSL-Linalg-SVD.tar.gz.asc (FAQ)
(the SlackBuild does not include the source)
Individual Files: |
README |
perl-Math-GSL-Linalg-SVD.SlackBuild |
perl-Math-GSL-Linalg-SVD.info |
slack-desc |
© 2006-2025 SlackBuilds.org Project. All rights reserved.
Slackware® is a registered trademark of
Patrick Volkerding
Linux® is a registered trademark of
Linus Torvalds